hobbies
chess

Photos Hobbies

Introduction

H ello and welcome to the homepage of my computer chess engine. On this
page you can learn about some of the algorithms and data structures it
uses, find links to some other pages interesting to chess programmers, see my
best suite results, past tournament results, and future plans.

In 2000 I started a chess program called "monsoon". When I made the code
multithreaded in 2004 I started a new project based largely on the same old
code called "typhoon". This code is not ready for an official release but it is
available to those who are interested. If you want to run it (instead of just look
at the code) then you'll have to build it yourself (which requires MSVC or gcc
and nasm) or get a precompiled (windows) version from Jim Ablett's website.
There is a (possibly outdated) user manual that might help you figure out how
to use it.

From time to time it plays under the monsoon account on ICC. In the future I'd
like to continue to improve the strength of the engine, remove bugs, and
officially release the engine. I'm not satisfied with the strength or usability
enough to do so yet, though.

The program maintains about a 2500 standard rating on the ICC server and has some good results
both against other chess engines and human masters. Of course there is a great deal of work to be
done on the program still.

How it Works

Board representation:

Internally, monsoon uses the 0x88 board representation. I first heard of this idea on the Computer
Chess Club bulletin board reading a post by Bruce Moreland (Ferret / Gerbil). In the 0x88
representation, the chess board is contained in an array of 128 elements instead of the normal 64.
Half of the board space is therefore "wasted" in that is is not used for storing piece information.

There are several nice things about this strategy. First, indexes into the board array are simple
unsigned characters (one byte in length). It turns out to be trivial (and fast) to test whether an index
points to a legal square on the board: simply AND it with 0x88. If the result is zero, the square is on
the board, otherwise it is not. This fact can make writing a relatively fast move generator pretty
simple (see my generator or Gerbil for an example). Unlike 2D array-based board representations,
accessing the contents of a square with the 0x88 representation uses only one index rather than two.
This reduces the amount of work required to determine the offset of your square in the array. Finally,
the "deltas" between related squares on the board are constant. Moving +/- 16 moves up or down one
rank. Moving +/- 1 moves left or right one file. The diagonals are +/- 15 and +/- 17.

One objection people often have to using the 0x88 representation is all the wasted space. The unused
part of the structure is represented as shaded squares in the table below. My engine builds an attack
table in this part of the data structure during position evaluation. In the past I have also used this
area to hold piece-square information. I'm sure you'll think of something good to stick in there. This
memory is pretty much always in the processor cache (because you're messing with the other half of
the board very often) so it can be accessed very quickly.

Another explanation of the 0x88 board format (and other chess board formats) can be found here.

A B C D E F G H Unused Space

0x00 (WOX(OEE 0x02 [MOXCEN 0x04 (MWoYL 0x06 |No (¥
9 |10 | 11 | 12 | 13 | 14 | 15
0 1 2 3 6 7
(QN Ox11 [MOSPA O0x13 [MOWEE Ox15 (WeYelslm Ox17
25 | 26 | 27 | 28 | 29 | 30 |31
16 17 18 19 20 21 22 23
0x20 |MOX@ANN 0x22 [NO@EN 0x24 (NN 0x26 |Hees
41 | 42 | 43 | 44 | 45 | 46 | 47
32 33 34 35 36 37 38 39

(€ 0x31 |NOEPl 0x33 [N 0x35 [H€ll 0x38

N

(-]

http://wannabe.guru.org/scott/
http://wannabe.guru.org/scott/info/
http://wannabe.guru.org/scott/info/
http://wannabe.guru.org/scott/info/contact.html
http://wannabe.guru.org/scott/info/location.html
http://wannabe.guru.org/scott/info/directions/
http://wannabe.guru.org/scott/photos/
http://wannabe.guru.org/scott/photos/
http://wannabe.guru.org/scott/photos/Alex0010YearsOld.html
http://wannabe.guru.org/scott/photos/Alex1020YearsOld.html
http://wannabe.guru.org/scott/photos/Alex2030YearsOld.html
http://wannabe.guru.org/scott/photos/Alex3040YearsOld.html
http://wannabe.guru.org/scott/photos/Alex4050YearsOld.html
http://wannabe.guru.org/scott/photos/Family.html
http://wannabe.guru.org/scott/photos/Friends.html
http://wannabe.guru.org/scott/photos/ItalyTrip.html
http://wannabe.guru.org/scott/photos/Hiking.html
http://wannabe.guru.org/scott/photos/Thailand.html
http://wannabe.guru.org/scott/photos/Wedding.html
http://wannabe.guru.org/scott/hobbies/
http://wannabe.guru.org/scott/hobbies/chess/
http://wannabe.guru.org/scott/hobbies/chess/
http://wannabe.guru.org/svn/typhoon/trunk/
http://wannabe.guru.org/scott/hobbies/chess/typhoon.html
http://wannabe.guru.org/scott/hobbies/chess/books/
http://wannabe.guru.org/scott/hobbies/
http://wannabe.guru.org/scott/misc/golf.html
http://wannabe.guru.org/scott/tools/
http://wannabe.guru.org/scott/hobbies/apache/
http://wannabe.guru.org/scott/hobbies/wireless/
http://wannabe.guru.org/scott/hobbies/books/
http://wannabe.guru.org/scott/hobbies/hiking/
http://wannabe.guru.org/scott/hobbies/skiing/
http://wannabe.guru.org/scott/hobbies/wood/
http://wannabe.guru.org/scott/tools/
http://wannabe.guru.org/scott/tools/sudoku/
http://wannabe.guru.org/svn/typhoon/trunk/
http://wannabe.guru.org/svn/ttt/
http://wannabe.guru.org/svn/reminder/trunk/
http://wannabe.guru.org/svn/os/
http://wannabe.guru.org/svn/batch/
http://wannabe.guru.org/scott/tools/capture_play.cpp
http://wannabe.guru.org/scott/photos/picasa.html
http://wannabe.guru.org/scott/map/
http://wannabe.guru.org/scott/map/
http://wannabe.guru.org/svn/typhoon/trunk
http://wannabe.guru.org/scott/hobbies/chess/monsoon.html#AEN102
http://homepages.tesco.net/henry.ablett/jims.html
http://wannabe.guru.org/scott/hobbies/chess/monsoon.html
http://www.chessclub.com/cgi-bin/finger/finger.pl?handle=monsoon
http://wannabe.guru.org/svn/typhoon/trunk/generate.c
http://www.seanet.com/~brucemo/gerbil/gerbil.htm
http://www.ics.uci.edu/~eppstein/180a/970408.html

56 | 57 | 58 | 59 | 60 | 61 | 62 |63
2 54

48 49 50 51 5 53 5
0x40 (MOZHE 0x42 [NXZEM 0x44 [MOZEM 0x46 (MOEys
4 72 | 73 74 |75 (76 | 77 | 78 | 79
64 65 66 67 68 69 70 71
(DCIN 0x51 [MOGPA 0x53 (MM O0x55 (MOYESM 0x57
3 88 | 8 | 90 | 91 92 | 93 | 94 | 95
0 381 2 33 4 85 6 3
0

5
7
0x60 [MOGHM 0x62 (NOGEN 0x64 (MG 0x66 [WMONGY4
2 104 | 105 | 106 | 107 | 108 | 109 | 110 |111
96 07 98 99 100 [OENEN102 [iok]
(72N 0x73 [MO@ZN 0x75 (WY 0x77
1 120 | 121 | 122 | 123 | 124 | 125 | 126 |127
114 [HEEEN116 [EVANN118 §hk)
Pieces on the board in monsoon are represented as simple bit patterns stored in this array. One bit in
the sequence signifies color and three bits signify piece type. Therefore only 1/2 byte of space is
required to store a piece on the board. I use the other space in the board elements to maintain
several quick-access indexes. These are used to map pieces to locations on the board so that, for
example, when I want to do something with every white pawn I do not have to scan the entire board

and find them. Instead, I just process the contents of my white pawn list one at a time and get the
location of all living white pawns.

In addition to knowing where all the pieces are, of course, the engine must keep track of whose turn
to move it is, what castling options are still legal, where en-passant can be played, how close to a
50-move draw it is, etc. All of these are aspects of a position structure (from chess.h):

//
// POSITION
//
typedef struct _POSITION
{
UINT64 u64NonPawnSig; // hash signature
UINT64 u64PawnSig; // pawn hash signature
SQUARE rgSquare([128]; // where the pieces are,
// also, the attack table
ULONG uToMove; // whose turn?

ULONG uFifty; // 50 moves w/o progress = draw
FLAG fCastled[2]; // record when sides have castled
BITV bvCastleInfo; // who can castle how?

COOR cEpSquare; // en-passant capture square
COOR cPawns[2][8]; // location of pawns on the board
ULONG uPawnMaterial[2]; // pawn material of each side
COOR cNonPawns[2][16]; // location of pieces on the board
ULONG uNonPawnMateriall[2]; // piece material of each side
ULONG uNonPawnCount[2][7]; // number of non-pawns / type

// 0 and 1 are the sum,
// 2..6 are per PIECE_TYPE

ULONG uWhiteSgBishopCount([2]; // num bishops on white squares
COOR cDanger[2][3]; // pieces in danger (from eval)
SCORE iKingScore([2]; // king safety score (from eval)
ULONG uMinMobility[2]; // min piece mobility (from eval)
}
POSITION;

Move Generation:

My old strategy for move generation was based on an idea I stole from GNUchess 4.x. Based upon
conversations I've had with other programmers, I believe that Diep, Ferret and Quark are all using a
similar idea (or have expanded on this idea somehow).

The idea involves using pre-computed tables are to derive the next location on the board that a piece
can move to given the piece's type, present location and starting location. For example, imagine I
have a queen on c3. NextSquare[QUEEN][c3][c3] might return b2. NextSquare[QUEEN][c3][b2] would
then return al. NextSquare[QUEEN][c3][al] would realize that there are no more squares in the down-
left direction for the queen and might then return c2. And so on. (c1, d2, el...)

But while generating possible moves sometimes we have to change directions before hitting the edge
of the board. Like, for example, when we run into a friendly piece and are blocked by it (or when we
run into an opponent's piece and generate the possible capture move). In these cases, the NextDir
table is used instead of the NextSquare one. NextDir maps a piece type, starting square and present
square into the first square in the next direction for that piece. Again, consider our queen on c3.
Imagine we are moving in an up-right and are considering e5. We find a friendly pawn. It does not

http://wannabe.guru.org/svn/typhoon/trunk/chess.h

make sense to continue using NextSquare and look at f6, g7, h8 now, because these squares are
blocked by the pawn at e5. Instead we access NextDirfQUEEN][c3][e5] and get back c4, for instance.
Both NextDir and NextSquare can indicate a complete loop (no next square) by returning the starting

square again.

For knights and kings, NextDir and NextSquare are the same, of cousrse. A move generator based on

this technique is very simple to read:

cSquare = g cNextSquare[pShiftPiece] [cStart] [cStart];

(cSquare != cStart)
{
ASSERT (ONBOARD (cSquare)) ;

while

xPiece = pos->pSquare[cSquare];
/7
// Empty square? Add a move.

//
if (IS _EMPTY (xPiece))
{

AddMove (pos, cStart, cSquare, pPiece, 0);

cSquare =

// Not empty?

g_cNextSquare[pShiftPiece] [cStart] [cSquare];
}

//
Add a capture if its an enemy piece.
/7
else
{
if (OPPOSITE COLORS (xPiece, pPiece))
{

AddMove (pos, cStart, cSquare, pPiece, xPiece, 0);

cSquare

}
= g cNextDir[pShiftPiece] [cStart] [cSquare];
}
}

Now, after all that explaination, I'll tell you why I don't use these tables anymore. In my testing I

found that, for my engine, they are slower than a more "direct" way of generating moves. Perhaps this

is because of memory bandwidth.

So instead I now use a simple 0x88 loop to generate moves. The move generator lives in generate.c.

Here's an example of how it works:

const INT g iBDeltas[] = {
-15, -17, +15, +17, 0 };

//

int x = 0;
COOR c;
PIECE p;

while (g iBDeltas([x] != 0)
{

c = cBishop + g _iBDeltas[x];

while (IS_ON_BOARD (c))
{
p = pos->rgSquare[c].pPiece;
if (IS_EMPTY (p))
{

_AddNormalMove (pStack, pos, cBishop, c, 0);

}
else
{
if (OPPOSITE COLORS (p, pos->uToMove))
{
_AddNormalMove (pStack, pos, cBishop, ¢, p):
}
break;
}
c += g_iBDeltas([x];
}

x++;

}

Move Data Structure

Mv old codebase used a (somewhat large) struct to represent a move. I would then pass

pointers to

http://wannabe.guru.org/svn/typhoon/trunk/generate.c

moves all over the place in the move generator code. When I rewrote my engine a while back I
decided that this was dumb and that I would make my moves 32-bit numbers. This, of course, allows
them to be passed directly on the stack by value and eliminates a lot of pointer dereferencing in the
generator code. Here's the definition of a MOVE in typhoon, which comes from chess.h:

typedef union _MOVE
{
UINT move;
struct
{
UCHAR cFrom
UCHAR cTo
UCHAR pMoved
UCHAR pCaptured
UCHAR pPromoted
UCHAR bvFlags
bi
} MOVE;

B s W 00

The ": 8" and ": 4" constructs are called "bitfields" and they request that the compiler use eight or four
bits to represent a struct member. When you use bitfields it's always good to make sure the compiler
generates code that actually listens to your size requirements; it can take some fiddling to make it
work. They are not the most portable part of the C language but they sure are handy sometimes.

Vector Delta Tables:

An attack vector table answers the question: given two squares, A and B, what kind of pieces sitting
on A would attack B if no blocking pieces were in-between. An attack delta table answers the
question: given two squares on a line, A and B, how do I move to get from A to B.

In my engine I use each bit in the contents of the vector table to represent a distinct piece: black
pawn, white pawn, bishop, knight, rook, queen, king. The delta table element contents are just an
signed number -- the direction of the first step on the ray from the initial square to the destination or
zero of no such ray exists.

These tables are indexed in a neat way. At first I thought about implementing these as two
dimensional arrays of 64 elements in each dimension (for a total of 4K entries). But after reading
some articles on CCC and thinking about the problem a little it because clear that these tables need
only be 256 elements in length. They are indexed by subtracting the destination square index from the
starting square index and adding 128. This results in a number between 0 and 256.

Tord Romstad's Glaurung engine uses a clever bit of pointer arithmetic to save the step of adding 128.
Here he declares a data structure that is indexed the same way (from square - to square + 128) but
also declares a pointer to the "middle" of the array. By using positive and negative indexes off this
pointer (+/- 128) he can use constructs like pistance[from - to]:

uint8 Distance [256];
uint8 *Distance = Distance +128;

Monsoon generates the vector delta tables as part of program data structure initialization.
Specifically, see mnitializevectorbeltaTable. These tables are used extensively in check detection, move
generation, X-ray attack detection, PGN file parsing for book creation, static exchange evaluation, and
position evaluation.

Search:

Algorithm

Monsoon uses a derivative of the alpha-beta search called a principal variation search (PVS). PVS is
like normal alpha-beta in that it prunes away whole branches of the minimax tree that do not
influence the value of the root position. However with PVS only the first move at a given node is
searched with a full alpha-beta window. Subsequent moves are searched with a minimal window of
beta = alpha + 1.

Ideally the best move is searched first and all subsequent moves should fail low. With the minimal
window, a great deal of work is saved in the process. However if a subsequent move fails high it must
then be re-searched with a larger window. Because of good move ordering, such re-searches are rare
and the practice of narrowing the search window artificially for subsequent moves saves work. More
information about PVS and many other search techniques and game structures can be found at this
website. You can also read my (very cluttered) search.c file for a working implementation.

Nullmove Pruning

http://wannabe.guru.org/svn/typhoon/trunk/chess.h
http://wannabe.guru.org/svn/typhoon/trunk/data.c
http://www.xs4all.nl/~verhelst/chess/
http://wannabe.guru.org/svn/typhoon/trunk/search.c

A nullmove search is a forward pruning technique used heavily in microcomputer chess based on this
idea: moving twice in a row in chess is a strong (though illegal) advantage. To help understand why
this is so powerful, imagine you we were playing a game of chess and you said to me, "My board
position is so strong that you can go ahead and move twice in a row... it won't help you". Because
moving twice in a row is such a great advantage, if I indeed could not make any progress against you
when you "passed" on your turn I could conclude that my position was terrible.

So in non-root plies computers often try a nullmove (i.e. "pass") before any other real move. This lets
the opponent move twice in a row. After this "pass" a recursive search of the position is performed to
a reduced depth. If this reduced depth nullmove search fails high then the computer assumes that
doing something should be better than doing nothing at all and proceeds to fails high at the node in
question without doing further work. This saves a lot of time because the engine did not have to
generate any moves or search any move subtrees under this node. All it had to do was a reduced
depth search under a "pass".

The amount of reduction in the nullmove search is called R. Typical values of R range between 1 and 3
plies. So, a nullmove R=2 would search the position after a pass to depth - R - 1 ply.

Like all good things, though, nullmove has some dangers. The first is that there are some positions
where it is an advantage to pass: zugzwang positions. These positions violate the nullmove
assumption that "doing something is better than doing nothing". Typically zugzwang positions only
occur in the late endgame, so most engines simply disable the nullmove search when the position is
deemed too late in the game. Another way to deal with this is to "confirm" all nullmove results with a
nullmove verification search.

Monsoon uses an idea called adaptive nullmove searching where R in the reduction formula changes
depending on the position under consideration. Ernst Heinz describes an adaptive nullmove strategy
that selects R based on the remaining depth. It reduces the nullmove search more aggressively when
high search depth remains. For more information about Ernst's version of adaptive nullmove see his
book Scalable Search in Computer Chess or website. I use another idea that scales R based on the
number of pieces on the board. This code is at the bottom of my search-support module, searchsup.c.

In the past I've played with two other ideas involving nullmove that I call "quick pruning" and "avoid
nullmove". I'll describe each briefly here despite the fact that both are disabled in the current
codebase.

"Quick pruning" is the ability to reduce the depth of the nullmove search when it seems clear by
positional analysis that the nullmove search is sure to succeed. Imagine that in the position after the
nullmove your opponent's score is terrible. Further, imagine that he has a piece hanging or trapped.
On top of that, he has no threats to your king. If you run the nullmove search it seems likely that it
will result in things getting worse for your opponent. It will fail low at the ply after the nullmove
meaning that the nullmove search will fail high and allow you to prune. Quick pruning strives to
recognize these positions and cheapen the cost of the nullmove search (or, in drastic cases, avoid the
search altogether and just prune).

"Avoid nullmove" is the ability to recognize a position where a nullmove is unlikely to succeed and
skipping the nullmove search. For example, imagine that after the nullmove you find that your
opponent is in great shape (score way > beta). Imagine you also find that he's about to win one of
your pieces. It's likely that your opponent will fail high after the nullmove (which means the nullmove
will fail low and not allow you to cutoff). In this case it might make sense to skip the nullmove
altogether and save the cost of the reduced depth search.

I'm interested in the results of any experiments you do with these two ideas. I think they are both
good but I have never been able to get them to clearly outperform standard nullmove searching and
thus have them both commented out.

Search Extensions

In some positions a player's move is forced. Such positions are good candidates for search line
extension. My program's search extensions include: intelligent checks, nullmove threat detection,
zugzwang positions, single legal reply to check, multi-piece checks, forced recaptures, "singular" reply
to check, and productive passed pawn pushes in the endgame.

My engine uses the now standard idea of fractional ply move extensions. This means that some
extensions may extend the search by less than one full ply.

The extension code is split into two parts in my code: the part that considers the present position for
extension and the part that considers the move we are making. The former lives at the top of search in
search.c while the latter lives in computeMoveExtension inside searchsup.c.

Multithreaded Search

When typhoon is running on a multi-processor machine it uses a tree splitting algorithm somewhat
similar to PVSplit to search the chess tree in parallel. However instead of just splitting the tree on PV
nodes I split the tree anywhere that I think is an "all" node. This includes PV nodes and "alpha" nodes
(nodes where all moves will fail low and facilitate a fail high at the previous ply). Specifically, after
the first move has been searched I will search the rest in parallel if it's a PV node or if the first N
moves all fail low. Right now N=3 but this is a matter of experimentation. Because a little work is

http://supertech.lcs.mit.edu/~heinz/dt/
http://wannabe.guru.org/svn/typhoon/trunk/searchsup.c
http://wannabe.guru.org/svn/typhoon/trunk/search.c
http://wannabe.guru.org/svn/typhoon/trunk/searchsup.c

involved to split the tree, you really don't want to have a fail high at a split node -- it's just a waste
of time. Moreover I don't split when there's not enough useful depth left to warrant the extra work.
You can see the conditions of where I split the search in the #irder up block(s) inside search.c. The
code that splits the position lives in split.c.

Getting the parallel search working involved some redesign but it was not anywhere near as hard as
some chess programmers lead you to believe. You need a place for individual searcher threads to
store different positions, different move stacks and different ply counters. I use a "searcher thread
context" structure for this purpose. This can be found in chess.h.

typedef struct _SEARCHER THREAD CONTEXT
{
POSITION sPosition;
MOVE_STACK sMoveStack;
POSITION HISTORY sPositionHistory[MAX PLY PER SEARCH];
MOVE mvKiller [MAX PLY PER SEARCH] [2];
ULONG uPly;
COUNTERS sCounters;
FLAG fImAHelper;
SPLIT INFO *pSplitInfo;
ULONG uPositional;
}
SEARCHER THREAD CONTEXT;

I pass this struct around in Search, QSearch, Eval and Generate which were rewritten to use data from
the context passed in instead of a global variable. I would recommend either doing something like
this or using a class if you are trying to implement a parallel search. I would not recommend TLS
(Thread Local Storage, a win32 feature to support per-thread identifiers) because they are slower and
non-portable.

Move Ordering:

When searching a move tree, the order you consider moves at a given position is important. Good
move ordering reduces the size of the search tree by causing fail highs (beta cutoffs) sooner. Here is
monsoon's move ordering scheme:

1. Hash move
2. Winning captures (judged by the SEE)
3. Even captures (judged by SEE)
4. Killer moves
5. Other non-captures (ranked by history value)
6. Losing captures (judged by SEE)

The hash move is the move attached to a hit in the transposition table. The score of a capture move
is judged by the static exchange evaluator (SEE): a routine that tries to predict the material gain or
loss of a sequence of captures quickly, without moving pieces on the board. A lot of people have
asked me how this works. Basically it makes a list of all pieces that attack or defend a certain square
and plays out the material exchange to assign it a value. There are a couple of wrinkles: first, either
side may opt out of the trade at any point when they are on the move by doing something else.
Second, my SEE looks for pieces that can't move because they are pinned to the king. Also after each
stage of the trade it checks to see if any new attackers (or defenders) have been uncovered. These
things make it slower than some SEEs but also more accurate. The dominent part of the routine itself,
a function called cetattackers, is coded in x86 assembly language to maximize speed. You can read it
in x86.asm. There's also a fallback routine written in C that lives in see.c.

Killer moves are a typical dynamic move ordering idea where good moves (i.e. refutations or beta
cuts) at a certain level (ply / distance from the root) in the search are stored and ordered sooner in
subsequent nodes at the same level. My code only allows non-capturing killer moves. The basic idea
behind the killer move is that if you have a crushing response at some distance from the root on one
branch of the search tree that same move might prove to be crushing (again) on another, different
branch. Threatoning passed pawn pushes are a good example of this killer move principle. In addition
to moves that fail high, my engine sticks mate-threatoning responses to null moves into the killer
lists. It also considers killers from both the current ply and current ply + 2 when ranking moves.

The history heuristic, like the killer move idea, is very widely used. History values for moves increase
as that move proves to be smart (by causing beta cutoffs, for example). Subsequently the move is
ordered sooner in the search.

I don't know where else to put this rant so I apologize in advance for the non sequitur. There is a
somewhat new idea called "history pruning" that was very confusing to me when I first heard about it.
The idea is to build up a per-move percentage that estimates the liklihood of the move to fail high.
This percentage is based on how the move has performed in the already searched nodes of the tree.
The pruning comes into play when we reduce the depth of search below moves that are unlikely to cut
off.

Why am I talking about this now? Well, as you can tell from the description of the pruning idea it has
very little to do with the "history heuristic". Specifically: history heuristic increases a per move
counter by an amount related to the depth of search remaining when the cutoff occurred and

http://wannabe.guru.org/svn/typhoon/trunk/search.c
http://wannabe.guru.org/svn/typhoon/trunk/search.c
http://wannabe.guru.org/svn/typhoon/trunk/search.c
http://wannabe.guru.org/svn/typhoon/trunk/x86.asm
http://wannabe.guru.org/svn/typhoon/trunk/see.c

history pruning tries to estimate the liklihood of a move to cut off. Don't confuse them.
Back to move ordering. Typhoon searches losing captures (as judged by the SEE) last.

That's about it for move ordering, basically. If you implement something like the above your engine
will do pretty well. I've heard of people trying the killer moves before the winning captures even, the
thought being that the hash move and the killer moves are free (i.e. you don't have to generate them)
so that if one causes a beta cutoff then you have a very inexpensive (therefore fast) node. I've never
tried this but it seems to be a sound idea.

Just to throw a little confusion into the mix I'll confess: I do have a couple of other dynamic ideas
that affect the search order. For example, non capturing moves of an en prise piece tend to be
considered sooner. Non capturing moves to squares controlled by the enemy are deferred until later.
And capturing moves of an en prise piece that appear to be productive are tried sooner in the winning
captures list. I also give a small bonus to checking moves so that they are considered before non-
checking moves of the same value.

The full move scoring code lives in routines like _ScoreAllMoves, _ScoreQSearchMovesInclChecks, and
_scoreQSearchMovesNoChecks iN generate.c. They call the SEE which lives in see.c.

Position Evaluation:

My engine does most of its evaluation work at leaf positions in the search tree. That said, the engine
keeps track of piece-square bonuses and material strengths incrementally -- these are part of a
POSITION structure and are updated at every move. It also runs a full eval on some internal nodes
when it's trying to make intelligent pruning/extension decisions.

Before running a normal evaluation at a leaf position the engine sees if it can use a specially coded
endgame evaluation routine.

Before running a full evaluation on a chess position, typhoon tries a "lazy evaluation". That is, given
the current alpha..beta bounds and a very rough approximation of the current positions score, if a
position "cannot possibly" fall inside the alpha..beta window then return a fail-high (>alpha) or fail-
low (eval.c for details.

Once it has been determined that a position will be fully evaluated the first step is to compute a
bunch of scores related to the pawn structure. Because many different board configurations share the
same pawn structure, I hash the pawn structure scores (and some other data about each pawn
structure). This hashtable hitrate is very high, something on the order of 99%. Here's what a pawn
hash entry looks like (from chess.h):

typedef struct PAWN HASH ENTRY
{
volatile ULONG uCheckedOut;
signed short iScorel[2];
UINT64 u64Key;
BITBOARD bbPawnLocations[2];
BITBOARD bbPasserLocations[2];
BITBOARD bbStationaryPawns[2];
UCHAR uCountPerFile([2][10];
UCHAR uNumRammedPawns;
UCHAR uNumUnmovedPawns|[2];

}
PAWN HASH ENTRY;

As you can see, part of each entry is made up of bitboards. This is the only place in my engine that
bitboards are used. Here's bitboard.c and x86.asm where some bitboardy routines live.

The precise formula and term weights that monsoon uses to evaluate a normal chess position are
secret and too complicated to explain in any detail in this document. Most of these terms are not just
static bonuses and penalties but are rather scaled based on board position, other terms etc. For
example the strength of an outposted knight is related to that knight's distance from the enemy king
and the strength of the friendly army. Moreover there is some code in the evaluator that is even
harder to explain. For example monsoon counts threats to a king... some of these threats are only
counted if other threats exist. The severity of the threat penalty is then scaled based on the strength
of the enemy army. Also, monsoon changes the weights of some terms based on game stage. If
you're interested in how this stuff works, check out eval.c. I'm also interested in any ideas you have
about position evaluation -- I am a terrible chessplayer and find writing good eval code to be a
challenge.

When assessing piece mobility monsoon does not count squares controlled by the enemy becasue
moving there would hang a piece.

If you're trying to write an eval routine you might be interested in a couple of books: Pawn Power in
Chess by GM Hans Kmoch is the basis of a lot of my pawn evaluator stuff. Also How to Reassess Your
Chess by IM Jeremy Silman is a good all-around evaluation book.

http://wannabe.guru.org/svn/typhoon/trunk/generate.c
http://wannabe.guru.org/svn/typhoon/trunk/see.c
http://wannabe.guru.org/svn/typhoon/trunk/chess.h
http://wannabe.guru.org/svn/typhoon/trunk/bitboard.c
http://wannabe.guru.org/svn/typhoon/trunk/x86.asm
http://wannabe.guru.org/svn/typhoon/trunk/eval.c
http://www.amazon.com/exec/obidos/tg/detail/-/0486264866/002-7365605-4873612?v=glance
http://www.amazon.com/exec/obidos/tg/detail/-/1890085006/002-7365605-4873612?v=glance

Here's a rough overview of the features monsoon cares about. I by no means consider myself to be
remotely qualified to write a chess eval function -- I am a weak club chess player and do not play
enough. But this list may be a useful starting point:

Pawns
Pawn duos
Rammed pawns / closed positions
Backwards pawns and backwards exposed pawns
Non-backwards pawn-supports-pawn structures
Passed pawns
Candidate passers / pawn majorities
Isolated and isolated exposed pawns
Doubled pawns
Pawn dispersion term
Connected passers
Connected passers vs. King and Rook code
Outside passers
Pawn shielding the king
Pawn storming the enemy king
Unstoppable runners
Assess control of the center

Kings
Open files, ranks or diagonals nearby
Half-open files nearby
Assess control of squares around the king
Encourage castling
Discourage loss of right to castle
Good to support passers with

Good to attack the other king with

Get it to the center in the endgame

Knights
Enemy king-tropism
Encourage early development
Discourage trapped knights
Encourage outposted knights
Good to block a passer or a backwards pawn
Good if there is an open file behind
Knight mobility
Knight centrality
Knight relevance
Bishop can't drive away the knight
Stronger in closed positions

Bishops
Enemy king-tropism
Bonus for Bishops over Knights in endgames with two pawn wings
Encourage development
Bonus for good fianchetto
Detect trapped bishops
Good vs. Bad bishops
Detect an active bad bishop
Bishop mobility
Two living bishops
Bishops of opposite colors in endgame

Rooks
Connected rooks
Good on half open or full open
Good to attack passers with
Good to point near the enemy king
Rook mobility (horizonatal and vertical)
Good to support friendly passer
Good to trap enemy king on the edge of the board
Good to get up to the 7th/2nd rank
Detect trapped rooks
Assess control of open files

Queen
Enemy king tropism
Friendly king tropism
Good to point near the enemy king
Bad to bring it out too early

Misc
Address material imbalances (pawns for a minor etc)
Detect stonewall positions
Detect edge of board mate threats
Dislike blocked positions

Transposition Tables:

A transposition table (or hash table) is a large data structure containing score information about
subtrees recently scored by search. If the same position, P, can be reached in more than one way, the
second time that search reaches position P it can, ideally, access the transposition table and retrieve
score information for P (and its subtree) without doing any further work.

Therefore one of the first things a search routine does in an engine with a transposition table upon
entering a new position is probe the transposition table to see if it can learn anything about the new
position cheaply. Likewise, when the search routine has learned something about a position by the
(expensive) recursive searching of its subtree, it stores the information in the transposition table so
that it can hopefully be reused later.

Each board position in typhoon has a 64-bit signature associated with it. This signature is built based
on the current piece configuration, the side to move, the castling rights, etc... all the items that make
up a unique board position. A hashing function maps this position signature to an entry in the
transposition table where information about the position can be stored. Of course, since the table is
limited in size often two positions will map to the same hash table entry. This is called a collision. It
is possible, therefore, that when the search tries to store information about a position it find the slot
in the hash table it would like to store in is already used. Or when it attempts to get information
about a position, it find information about a different position than it sought.

A few things have to be done to effectively deal with collisions. First, the hash entries have to contain
some or all of the signature of the position to which they relate. This is so that when search probes
the table for data about position P and finds data about position Q it will know that a collision has
occurred and that the data in the hash is irrelevant. To deal with collisions while storing information in
the hash a replacement scheme is needed. This is a set of rules that govern when an entry already in
the table can be overwritten and when it should not be.

My strategy for dealing with collisions (along with the rest of my hash table code) lives in hash.c.
Specifically, check out selectHashEntry fOor my replacement scheme.

When I wrote the hash code in monsoon I decided to try to make use of the size of a cpu cache line.
My hash table entry is 16 bytes in size and I run monsoon on an Athlon with a 64 byte data cache
line. So when I hash a position really select a line that could contain information about that position.
I use one of these four entries as an always-store table, one as a depth-priority table and the
remaining two as locations to store whatever entries get bumped from either the depth or always
table entries.

Other then storing the signature of its position, each hash entry also stores the score data about its
position. Score data for a node can say "this node is worth exactly X", "this node is worth at least X"
or "this node is worth at most X". These are called exact, lower bound and upper bound scores. It is
pretty rare that we know the precise value of a position -- exact evaluations can be stored only after a
node has been fully searched and found to be on the PV. Upper and lower bounds, far more frequent,
can be stored when the search fails low or high (respectively). The draft of a node tells us to what
depth the search evaluated this position before storing its data in the table.

Typhoon uses about 256Mb of memory for its main transposition table. Each table entry is 16 bytes in
length and the hash probing function tries four entries at per probe.

The multi-threaded version of my engine locks 1/64th of the hash table at a time to prevent corruption
when more than one searcher thread is using the same entry. This is cheap, contention is very low,
and seems to work well. The code locks pawn hash entries on an individual basis (not a whole range
like the main hash table) but has a provision for other search threads to multi-probe in the pawn hash
table after spinning a while so that they do not block waiting on another searcher thread that is
evaluating a position with the same pawn configuration. Because of this I tend to have a larger pawn
hash table than most engines.

More information about transposition tables and many other aspects of chess programming can be
found here. Transposition tables are a breeding ground for chess program bugs. To get one working
well is a non-trivial task. The best way to start is to make sure you fully understand alpha-beta
searching and what your hash table is doing. Then read the source code for some other programs that
do hashing already.

Miscellanious:

Typhoon has an opening book of over 3 million position based on about 600,000 expert human games
in PGN format. I don't know jack about opening theory so I made the book structure have the ability
to learn based on the results of games it plays with particular lines. The book is also pretty
custimizable -- each line has a weight that can be adjusted on the fly. You can also tag one line as an
always/never play. The opening library code lives in book.c.

My engine also supports Eugene Nalimov's endgame tablebases and uses all 3, 4, and 5 man files
while playing online. To do this I'm using Eugene's code (with permission) by simply pulling it from
the Crafty codebase. My engine also has some simple interior node recognizers for wrong color bishop
endgames and trivially won KP+K games. These recognizers are based on Thorsten Greiner's excellent
program Amy.

http://wannabe.guru.org/svn/typhoon/trunk/hash.c
http://www.maths.nott.ac.uk/personal/anw/G13GT1/compch.html
http://wannabe.guru.org/svn/typhoon/trunk/hash.c

Test Suites

I run the Encycl ia of Ch Middlegames (ECM), Win at Chess (WAC) and Winning Chess
Sacrifices (WCSAC) test suites to help measure the impact of changes to the engine and its tactical
abilities.
Smte name Time / move Score Date
20 sec 717 / 879 Aug 2006
WAC 20 sec 296 / 300 Jan 2002
Tournaments

Monsoon played in the 3rd CCT tournament on the Internet Chess Club. Scored 3.0 / 8.0 in a strong
field. I'm pretty happy with this result despite the fact that its not particularly good. I had a great
time and picked up some new ideas. I even found a big bug in the move ordering. This, coupled with
the fact that monsoon's hardware was outclasses by nearly every other engine, made 30th place (of
32) a bit easier to stomach.

Monsoon played in the 4th CCT tournament on the Internet Chess Club. Scored 6.0 / 11.0 in a strong
field for 15th out of 47 engines. All in all a fun tournament and a pretty good result.

Monsoon played in the 5th CCT tournament. It placed 6th out of 45 engines scoring 6.0 / 9.0, a great
result for me. I have not had any time since this tournament in January 2003 to work on the engine,
unfortunately.

Thanks!

Thanks to all the members of the CCC discussion list especially Bob Hyatt (Cray Blitz, Crafty) and
Bruce Moreland (Ferret, Gerbil) for their patience and willingness to explain chess-programming
concepts. Thanks to Eugene Nalimov and Ernst Heniz for their continuing work on high quality
endgame tablebases. Thanks to Tim Mann for his work on xboard / winboard. Thanks to Tom Kerrigan
(TSCP, Stobor) for publishing TSCP source code which was the first chess engine I read and the reason
I became interested in chess programming. Thanks to Thorsten Greiner for writing and publishing the
source to his Amy program and (again) to Bob Hyatt for writing and publishing the source to Crafty.
Thanks to Ernst Heinz (DarkThought) for publishing his excellent research on computer chess.

Thanks to Vincent Diepeveen (Diep) for his discussions and guidance. Many thanks to Dann Corbit for
porting monsoon to Microsoft VC and Intel C++ compilers. Thanks to IM Mark Chapman (ICC handle
agro) for his help with opening book lines and his patient expert analysis of chess positions. Thanks
to Peter McKenzie (LambChop) for discussing chess programming ideas and sharing his thoughts and
advice. Finally thanks to Steve Timson (Chester) for sharing his good ideas and listening to my lousy
ones... without some of his advice monsoon would surely not be as strong as it is today.

(none) was last updated (none) and is Copyright (C) 2002-2010 by Scott Gasch (scott@wannabe.guru.org).

http://wannabe.guru.org/scott/hobbies/chess/ECM.EPD
http://wannabe.guru.org/scott/hobbies/chess/WAC.EPD
http://wannabe.guru.org/scott/hobbies/chess/WCSAC.EPD
http://www.vrichey.de/cct3/cct3gamestab.htm
http://www.vrichey.de/cct4/index_table.html
http://www.vrichey.de/cct5/index_table.htm
http://www.talkchess.com/
ftp://juniper.cis.uab.edu/pub/hyatt/
http://www.seanet.com/~brucemo/gerbil/gerbil.htm
http://www.tim-mann.org/
http://socsci.colorado.edu/~tarrb/kerrigat/
ftp://cap.connx.com/pub/chess-engines/new-approach/
http://supertech.lcs.mit.edu/~heinz/dt/
http://www.students.cs.ruu.nl/~vdiepeve/
http://homepages.caverock.net.nz/~peter/chess.htm
mailto:scott@wannabe.guru.org

